Answer :

A 45 - 45 - 90 triangle appears to be an isosceles triangle. This means that the two sides of the triangle are equal.

Putting more details in the figure, we get:

Since the figure is a right triangle, we can use the Pythagorean Theorem to find x.

We get,

[tex]\text{ c}^2\text{ }=a^2\text{ }+b^2[/tex][tex]\text{ x}^2\text{ }=8^2+8^2^{}[/tex][tex]\text{ x}^2\text{ }=64\text{ }+\text{ 64}[/tex][tex]\text{ x}^2\text{ }=128[/tex][tex]\text{ x}^{}\text{ }=\sqrt{128}\text{ }=\text{ }\sqrt[]{2\text{ x 64}}[/tex][tex]\text{ x}^{}\text{ }=8\sqrt[]{2}[/tex]

Therefore, x = 8√2

${teks-lihat-gambar} TeddieN150790

Other Questions