Answer :

Given:

[tex]A=\begin{bmatrix}{-1} & {-2} & \\ {-6} & {7} & {}\end{bmatrix},B=\begin{bmatrix}{0} & {10} & \\ {-8} & {6} & {}\end{bmatrix}[/tex]

Perform the matrix operations,

[tex]\begin{gathered} 3A-2B=3\begin{bmatrix}{-1} & {-2} & \\ {-6} & {7} & {}\end{bmatrix}-2\begin{bmatrix}{0} & {10} & \\ {-8} & {6} & {}\end{bmatrix} \\ 3A-2B=\begin{bmatrix}{-3} & {-6} & \\ {-18} & {21} & {}\end{bmatrix}-\begin{bmatrix}{0} & {20} & \\ {-16} & {12} & {}\end{bmatrix} \\ 3A-2B=\begin{bmatrix}{-3-0} & {-6-20} & \\ {-18+16} & {21-12} & {}\end{bmatrix} \\ 3A-2B=\begin{bmatrix}{-3} & {-26} & \\ {-2} & {9} & {}\end{bmatrix} \end{gathered}[/tex]

Answer:

[tex]3A-2B=\begin{bmatrix}{-3} & {-26} & \\ {-2} & {9} & {}\end{bmatrix}[/tex]

Other Questions