Answer :
To solve this question, follow the steps below.
Step 01: Find the maximum volume per day.
The maximum volume per day is when 5 hectoliters per minute are collected for 7.5 hours.
To find this volume, first, let's transform 5 hectoliters per minute into hectoliters per hour.
Knowing that 1 hour = 60 minutes:
[tex]\begin{gathered} 5\frac{hectoliters}{minute}*\frac{60minutes}{1hour} \\ 5*60\frac{hectoliters}{hour} \\ 300\frac{hectol\imaginaryI ters}{hour} \end{gathered}[/tex]Now, let's multiply by 7.5 hours to find how many hectoliters are collected per day:
[tex]7.5*300=2250\frac{hectoliters}{day}[/tex]Step 02: Transform the volume to liters.
Since 1 hectoliter = 100 liters.
[tex]\begin{gathered} 2250\frac{hectoliters}{day}*100\frac{liters}{hectoliter} \\ 225000\frac{l\imaginaryI ters}{day} \end{gathered}[/tex]Step 03: Find the number of bottles.
Since 1 bottle has 4.5 liters:
[tex]\begin{gathered} 225000\frac{l\imaginaryI ters}{day}*\frac{1\text{ }bottle}{4.5\text{ }litters} \\ \frac{225000}{4.5}\frac{bottles}{day} \\ 50000\frac{bottles}{day} \end{gathered}[/tex]Answer: The maximum number of bottles the warehouse can receive in one day is 50,000.