Answer :
Question:
Solution:
Consider the following function:
[tex]f(x)=8x-x^2[/tex]The derivative of this function is:
[tex]f^{\prime}(x)=8-2x^{}[/tex]Now, if we evaluate this function at x = 0, x=1, x= 2 and x= 3, we get respectively:
[tex]f^{\prime}(0)=8-2(0)=8-0=8^{}[/tex][tex]f^{\prime}(1)=8-2(1)=8-2=6^{}[/tex][tex]f^{\prime}(2)=8-2(2)=8-4=4^{}[/tex]and
[tex]f^{\prime}(3)=8-2(3)=8-6=2^{}[/tex]According to this:
[tex]f^{\prime}(a)=8-2(a)^{}[/tex]So that, we can conclude that the correct answers are:
[tex]f^{\prime}(0)=8^{}[/tex][tex]f^{\prime}(1)=6^{}[/tex][tex]f^{\prime}(2)=4^{}[/tex][tex]f^{\prime}(3)=2^{}[/tex]and
[tex]f^{\prime}(a)=8-2a[/tex]Note that the above formula is a function of a, so it depends only of a.
