We have the next equations
Sum the vertical forces
[tex]\sum ^{}_{}F_y=Tcos\theta-Rcos(15)+570=0[/tex]
Sum of the horizontal forces
[tex]\sum ^{}_{}F_x=Rsin(15)-Tsin\theta=0[/tex][tex]R=\frac{T\sin (\theta)}{\sin (15)}[/tex]
Sum of the moments about R
[tex](-570)\cos (\theta)(0.18)+T(0.07)=0[/tex]
We isolate here the T
[tex]T=\frac{570\cos\theta(0.18)}{(0.07)}=1465.71\cos (\theta)[/tex]
We substitute the value of T in the equation with R isolated
[tex]R=\frac{1465.71\cos(\theta)\sin(\theta)}{\sin(15)}[/tex]
Ans we substitute the value of R and T in the sum of forces in y
[tex]1465.71\cos ^2(\theta)-\frac{1465.71\cos(\theta)\sin(\theta)}{\sin(15)}cos(15)+570=0[/tex]
We simplify the equation
[tex]\begin{gathered} \cos ^2(\theta)-3.732(\sin (\theta))(\cos (\theta))+0.388=0 \\ \end{gathered}[/tex]
[tex]\cos ^4(\theta)-(0.8809)\cos ^2(\theta)+0.01013=0[/tex]
[tex]\cos ^2\theta=(0.01165)(0.8693)[/tex][tex]\theta=\cos ^{-1}(\sqrt[]{0.8693})=21.2\text{\degree}[/tex]
Then for T
[tex]T=1465.71\cos (21.2)=1366.52N[/tex]
Then for R
[tex]R=\frac{1465.71\cos (21.2)\sin (21.2)}{\sin (15)}=1909.31N[/tex]