Answer :

Answer:

B. cos θ = -1/2

Explanation:

To determine the equation in which the value of θ is a positive value, we solve each of the equations in radians:

[tex]\begin{gathered} \tan \theta=-\frac{\sqrt[]{3}}{3}\implies\theta=\tan ^{-1}(-\frac{\sqrt[]{3}}{3})=-0.5236 \\ \cos \theta=-\frac{1}{2}\implies\theta=\cos ^{-1}(-\frac{1}{2})=2.0944 \\ \sin \theta=-\frac{\sqrt[]{3}}{2}\implies\theta=\sin ^{-1}(-\frac{\sqrt[]{3}}{2})=-1.0472 \\ \csc \theta=-1\implies-\frac{\pi}{2} \end{gathered}[/tex]

From the above, we see that only cos θ gives a positive value in radians.

The correct equation is B.

Other Questions