Answer :
Given: two points (0,3) and (7,0)
The equation of line in slope intercept form is ,
[tex]y=mx+c\ldots(1)[/tex]To find the slope,
[tex]\begin{gathered} m=\frac{y_2-y_1}{x_2-x_1} \\ (x_{1,}y_1)=(0,3) \\ (x_{2,}y_2)=(7,0) \\ m=\frac{0-3}{7-0} \\ m=\frac{-3}{7} \end{gathered}[/tex]Now the equtaion of required line passing through points (0,3) and (7,0)
from equation (1)
[tex]\begin{gathered} y=mx+c \\ y=\frac{-3}{7}x+c\ldots..(2) \end{gathered}[/tex]Now to find the value of y-intercept c put the point (0,3) in equation (2)
[tex]\begin{gathered} y=\frac{-3}{7}x+c \\ (x,y)=(0,3) \\ 3=\frac{-3}{7}(0)+c \\ c=3 \end{gathered}[/tex]Hence, the equation of line is,
[tex]y=\frac{-3}{7}x+3[/tex]Answer: Option 3) is correct
y=-3/7x+3