Answer :

We have to rewrite the expression using sum-to-product identities.

The expression is:

[tex]\frac{\sin7x+\sin5x}{\cos7x+\cos5x}[/tex]

We will then use this identity:

[tex]\sin a+\sin b=2\sin (\frac{a+b}{2})\cos (\frac{a-b}{2})[/tex]

and this identity:

[tex]\cos a+\cos b=2\cos (\frac{a+b}{2})\cos (\frac{a-b}{2})[/tex]

We can apply it to our expression as:

[tex]\begin{gathered} \frac{\sin7x+\sin5x}{\cos7x+\cos5x}=\frac{2\cdot\sin (\frac{7x+5x}{2})\cos (\frac{7x-5x}{2})}{2\cdot\cos (\frac{7x+5x}{2})\cos (\frac{7x-5x}{2})} \\ \frac{\sin7x+\sin5x}{\cos7x+\cos5x}=\frac{\sin (\frac{12x}{2})}{\cos (\frac{12x}{2})} \\ \frac{\sin7x+\sin5x}{\cos7x+\cos5x}=\frac{\sin (6x)}{\cos (6x)} \\ \frac{\sin7x+\sin5x}{\cos7x+\cos5x}=\tan (6x) \end{gathered}[/tex]

Answer: the expression is equal to tan(6x)

Other Questions