Answer:
C: (-8, 2)
Step-by-step explanation:
Given parabola:
[tex]y=-\dfrac{1}{8}x^2-2x-4[/tex]
For the quadratic equation in the form y = ax² + bx + c, the x-value of the vertex is -b/2a.
Therefore, the x-value of the vertex of the given parabola is:
[tex]\implies x=-\dfrac{b}{2a}=-\dfrac{-2}{2\left(-\frac{1}{8}\right)}=-8[/tex]
To find the y-value of the vertex, input x = -8 into the given equation:
[tex]\implies y=-\dfrac{1}{8}(-8)^2-2(-8)-4=4[/tex]
Therefore, the vertex (h, k) of the parabola is (-8, 4).
The focus of the parabola is (h, k+p) where:
- [tex]p=\dfrac{1}{4a}[/tex]
Therefore:
[tex]\implies \textsf{Focus}=\left(-8,4+\dfrac{1}{4\left(-\frac{1}{8}\right)}\right)=\left(-8,2)[/tex]