Answer :

semsee45

Answer:

C:  (-8, 2)

Step-by-step explanation:

Given parabola:

[tex]y=-\dfrac{1}{8}x^2-2x-4[/tex]

For the quadratic equation in the form y = ax² + bx + c, the x-value of the vertex is -b/2a.  

Therefore, the x-value of the vertex of the given parabola is:

[tex]\implies x=-\dfrac{b}{2a}=-\dfrac{-2}{2\left(-\frac{1}{8}\right)}=-8[/tex]

To find the y-value of the vertex, input x = -8 into the given equation:

[tex]\implies y=-\dfrac{1}{8}(-8)^2-2(-8)-4=4[/tex]

Therefore, the vertex (h, k) of the parabola is (-8, 4).

The focus of the parabola is (h, k+p) where:

  • (h, k) is the vertex
  • [tex]p=\dfrac{1}{4a}[/tex]

Therefore:

[tex]\implies \textsf{Focus}=\left(-8,4+\dfrac{1}{4\left(-\frac{1}{8}\right)}\right)=\left(-8,2)[/tex]

Other Questions