Answer :

|dw:1363988175508:dw|
-------------------------------------

|dw:1363988369702:dw|
------------------------------------

|dw:1363988448407:dw|
------------------------------------
From thus the answer would be

X = 3

:)



calculista

Answer:

[tex]x=3[/tex]

Step-by-step explanation:

we have

[tex]\frac{3}{3x}+\frac{1}{x+4}=\frac{10}{7x}[/tex]

The domain of the function is all real numbers except the zero, because the denominator can not be zero

Multiply by [tex][3x(x+4)7x][/tex] both sides

[tex]\frac{3[3x(x+4)7x]}{3x}+\frac{[3x(x+4)7x]}{x+4}=\frac{10[3x(x+4)7x]}{7x}[/tex]

[tex]\frac{3[3x(x+4)7x]}{3x}+\frac{[3x(x+4)7x]}{x+4}=\frac{10[3x(x+4)7x]}{7x}[/tex]

[tex]3[(x+4)7x]+[3x(7x)]=10[3x(x+4)][/tex]

[tex]21x^{2}+84x+21x^{2}=30x^{2}+120x[/tex]

[tex]42x^{2}+84x=30x^{2}+120x[/tex]

[tex]42x^{2}-30x^{2}+84x-120x=0[/tex]

[tex]12x^{2}-36x=0[/tex]

Divide by [tex]12[/tex] both sides

[tex]x^{2}-3x=0[/tex]

we know that


The formula to solve a quadratic equation of the form [tex]ax^{2} +bx+c=0[/tex] is equal to


[tex]x=\frac{-b(+/-)\sqrt{b^{2}-4ac}} {2a}[/tex]


in this problem we have


[tex]x^{2}-3x=0[/tex]

so


[tex]a=1\\b=-3\\c=0[/tex]


substitute in the formula


[tex]x=\frac{3(+/-)\sqrt{(-3)^{2}-4(1)(0)}} {2(1)}[/tex]


[tex]x=\frac{3(+/-)\sqrt{9}} {2}[/tex]


[tex]x=\frac{3(+/-)3} {2}[/tex]


[tex]x=\frac{3+3} {2}=3[/tex]


[tex]x=\frac{3-3} {2}=0[/tex]


remember that

The domain of the function is all real numbers except the zero

so

the solution is

[tex]x=3[/tex]

Other Questions