Answer :

[tex]\bf \begin{array}{lllll} &x_1&y_1\\ % (a,b) &({{ -2}}\quad ,&{{ 4}}) \end{array} \\\\\\ % slope = m slope = {{ m}}= \cfrac{rise}{run} \implies \cfrac{2}{5} \\\\\\ % point-slope intercept \stackrel{\textit{point-slope form}}{y-{{ y_1}}={{ m}}(x-{{ x_1}})}\implies y-4=\cfrac{2}{5}[x-(-2)] \implies y-4=\cfrac{2}{5}(x+2) \\\\\\ y-4=\cfrac{2}{5}x+\cfrac{4}{5}\implies y=\cfrac{2}{5}x+\cfrac{4}{5}+4\implies y=\cfrac{2}{5}x+\cfrac{24}{5}[/tex]

Answer:

Y-4 =2/5(x-(-2)) is answer on edge

Step-by-step explanation:

Use point slope equaction y-y1=m(x-x1)

y1= 4 x1= -2 and m= 2/5 just plug in numbers

Other Questions