Answered

What is the length of BC, rounded to the nearest tenth?

A. 13.0 units
B. 28.8 units
C. 31.2 units
D. 33.8 units

What is the length of BC, rounded to the nearest tenth? A. 13.0 units B. 28.8 units C. 31.2 units D. 33.8 units class=

Answer :

The answer is C.31.2 HOPE IT HELPS
calculista

Answer:

Option C. [tex]BC=31.2\ units[/tex]

Step-by-step explanation:

step 1

In the right triangle ABD find the length side AB

Applying the Pythagoras Theorem

[tex]AB^{2}=5^{2}+12^{2}[/tex]

[tex]AB^{2}=169[/tex]

[tex]AB=13\ units[/tex]

step 2

In the right triangle ABD

we know that

[tex]m<ABD=m<BCD[/tex]

[tex]sin(<ABD)=\frac{5}{13}[/tex] -------> equation A

step 3

In the right triangle ABC

[tex]sin(<BCD)=\frac{13}{5+DC}[/tex] ------> equation B

Remember that

[tex]m<ABD=m<BCD[/tex]

so equate equation A and equation B solve for DC

[tex]\frac{5}{13}=\frac{13}{5+DC}[/tex]

[tex]5(5+DC)=13*13[/tex]

[tex]25+5DC=169[/tex]

[tex]5DC=169-25[/tex]

[tex]5DC=144[/tex]

[tex]DC=144/5=28.8\ units[/tex]

step 4

In the right triangle BDC find the length side BC

Applying the Pythagoras Theorem

[tex]BC^{2}=28.8^{2}+12^{2}[/tex]

[tex]BC^{2}=973.44[/tex]

[tex]BC=31.2\ units[/tex]

Other Questions