Answer :

kritter1
I have attached an image of a long division method that can be used to find the quotient and remainder.

Hope I helped :)
${teks-lihat-gambar} kritter1

Answer:

[tex]x^2+x-1-\frac{6}{x+4}[/tex]

Step-by-step explanation:

Rational expression form : [tex]\frac{a(x)}{b(x)}=q(x)+\frac{r(x)}{b(x)}[/tex]

a(x) = dividend

b(x) = divisor

q(x) = quotient

r(x) = remainder

Given expression : [tex]\frac{x^3+5x^2+3x-10}{x+4}[/tex]

We know that [tex]Dividend = Divisor \times Quotient+Remainder[/tex]

So, [tex]x^3+5x^2+3x-10 =x+4 \times (x^2+x-1)-6[/tex]

Thus a(x) = dividend =  [tex]x^3+5x^2+3x-10 [/tex]

b(x) = divisor= [tex]x+4[/tex]

q(x) = quotient=[tex]x^2+x-1[/tex]

r(x) = remainder=-6

Substitute the value in the rational form.

[tex]\frac{x^3+5x^2+3x-10}{x+4}=x^2+x-1-\frac{6}{x+4}[/tex]

Hence the rational expression [tex]\frac{x^3+5x^2+3x-10}{x+4}[/tex] in the form of [tex]q(x)+\frac{r(x)}{b(x)}[/tex] is  [tex]x^2+x-1-\frac{6}{x+4}[/tex]

Other Questions