Answer :

All answers are the same, 9, but only the first choice follows a correct simplification.

Answer:

Option A is correct.

Step-by-step explanation:

Given: [tex]\sqrt{9}=9^{\frac{1}{2}}[/tex]

To find: True Statement for [tex](9^{\frac{1}{2}})^2[/tex]

We use the following Law of Exponent,

[tex]x^a\times x^b=x^{a+b}[/tex]

Consider,

[tex](9^{\frac{1}{2}})^2[/tex]

[tex]=9^{\frac{1}{2}}\times9^{\frac{1}{2}}[/tex]

Using Law of Exponent,

[tex]=9^{(\frac{1}{2}+\frac{1}{2})}[/tex]

[tex]=9^{\frac{1+1}{2}}[/tex]

[tex]=9^{\frac{2}{2}}[/tex]

[tex]=9^{1}[/tex]

[tex]=9[/tex]

Therefore, Option A is correct.

Other Questions