Select the simplification that accurately explains the following statement. √9=9 1/2

Answer:
Option A is correct.
Step-by-step explanation:
Given: [tex]\sqrt{9}=9^{\frac{1}{2}}[/tex]
To find: True Statement for [tex](9^{\frac{1}{2}})^2[/tex]
We use the following Law of Exponent,
[tex]x^a\times x^b=x^{a+b}[/tex]
Consider,
[tex](9^{\frac{1}{2}})^2[/tex]
[tex]=9^{\frac{1}{2}}\times9^{\frac{1}{2}}[/tex]
Using Law of Exponent,
[tex]=9^{(\frac{1}{2}+\frac{1}{2})}[/tex]
[tex]=9^{\frac{1+1}{2}}[/tex]
[tex]=9^{\frac{2}{2}}[/tex]
[tex]=9^{1}[/tex]
[tex]=9[/tex]
Therefore, Option A is correct.