Answer :

recursive:
a(1)≈2
a(n)≈a(n-1)x3

explicit:
a(n)≈ 2(3)^n-1

Answer:

       

Step-by-step explanation:

The given geometric sequence is:

2,6,18,54

Here, [tex]a_{1}=2[/tex], [tex]a_{2}=6[/tex], [tex]a_{3}=18[/tex] and [tex]a_{4}=54[/tex]

Explicit formula is given as: [tex]a_{n}=a_{1}r^{n-1}[/tex]

Now, [tex]r=\frac{a_{n+1}}{a_{n}}[/tex]

=[tex]\frac{6}{2}=3[/tex]

Substituting in the above explicit formula, we have

[tex]a_{n}=2(3)^{n-1}[/tex]

=[tex]2(3)^n(3)^{-1}=\frac{2}{3}(3)^n[/tex]

Recursive formula is given as:[tex]a_{1}=2[/tex], [tex]a_{n+1}=3a_{n}[/tex].

Other Questions