Answer :
Given that:
c(x) = 3x2 − 10x + 200
and
r(x)=−2x2 + 100x + 50
Profit is given by:
P(x)=r(x)-c(x)
P(x)=(−2x2 + 100x + 50)-(3x2 − 10x + 200)
P(x)=-5x^2+110x-150
thus:
at maximum profit P'(x)=0
thus:
P'(x)=-10x+110=0
hence:
x=11
thus the number of units required for one to make profit is 11 units
c(x) = 3x2 − 10x + 200
and
r(x)=−2x2 + 100x + 50
Profit is given by:
P(x)=r(x)-c(x)
P(x)=(−2x2 + 100x + 50)-(3x2 − 10x + 200)
P(x)=-5x^2+110x-150
thus:
at maximum profit P'(x)=0
thus:
P'(x)=-10x+110=0
hence:
x=11
thus the number of units required for one to make profit is 11 units