Answer :
Answer:
3 : 8
Step-by-step explanation:
Let x quantity of 10% ethanol is mixed with y quantity of 65% ethanol to obtain 50% ethanol mixture,
Thus, the total quantity of resultant mixture = x + y
Also, ethanol in 10% ethanol mixture + ethanol in 65% ethanol mixture = ethanol in resultant mixture,
⇒ 10% of x + 65% of y = 50% of (x+y)
[tex]\implies \frac{10x}{100}+\frac{65y}{100}=\frac{50(x+y)}{100}[/tex]
⇒ 10x + 65y = 50(x+y)
⇒ 10x + 65y = 50x+50y
⇒ 10x - 50x = 50y - 65y
⇒ -40x = -15y
[tex]\implies \frac{x}{y}=\frac{15}{40}=\frac{3}{8}[/tex]