Answer :

absor201

Answer:

[tex]m=\frac{2A-kn}{k}[/tex]

Hence, option C is true.

Step-by-step explanation:

Given the expression

[tex]A=\frac{k}{2}\left(m+n\right)[/tex]

Solving for 'm'

[tex]A=\frac{k}{2}\left(m+n\right)[/tex]

Flip the equation

[tex]\frac{k}{2}\left(m+n\right)=A[/tex]

Expanding by applying the distributive law: [tex]a\left(b+c\right)=ab+ac[/tex]

[tex]\frac{1}{2}km+\frac{1}{2}kn=A[/tex]

Add (-1)/2 × kn to both sides

[tex]\frac{1}{2}km+\frac{1}{2}kn+\left(-\frac{1}{2}kn\right)=\left(-\frac{1}{2}kn\right)+A[/tex]

simplify

[tex]\frac{1}{2}km=-\frac{1}{2}kn+A[/tex]

Divide both sides by k/2

[tex]\frac{\frac{1}{2}km}{\frac{k}{2}}=\frac{-\frac{1}{2}kn+A}{\frac{k}{2}}[/tex]

[tex]m=\frac{2A-kn}{k}[/tex]

Therefore,

[tex]m=\frac{2A-kn}{k}[/tex]

Hence, option C is true.

Other Questions